John Charles Polanyi

Physical Chemistry

Won the 1986 Nobel Prize in chemistry for using chemi-luminescence of molecules to explain energy relationships in chemical reactions

"The most exciting thing in the twentieth century is science. Young people ask me if this country is serious about science. They aren’t thinking about the passport that they will hold, but the country that they must rely on for support and encouragement."

At about eight o’clock on a Thursday night in 1956, John Polanyi walks into the janitorial closet he calls a laboratory. The young University of Toronto lecturer can’t expect much more; he isn’t even an assistant professor yet. Polanyi’s graduate student, Ken Cashion, who is wearing one of his many short-sleeved Hawaiian shirts, says, “Well, I think we’re ready for another run.”

“Did you check the seals on the ‘Stokes’?” asks Polanyi, glancing at the giant vacuum pump thwapping away in the corner.

“Yes. They’re not great, but I think she’ll hold for one more experiment,” says Cashion.

The fresh-air scent of ozone catches Polanyi’s nose as Cashion opens the hydrogen valve and flicks a switch. For this experiment they need hydrogen gas as single atoms. (Hydrogen occurs naturally in pairs of hydrogen atoms.) Ken has scrounged the electrical discharge unit from an old neon sign. By jolting the flow of hydrogen with 6,000 volts of electricity, Polanyi and Cashion break the gas into single hydrogen atoms. Polanyi likes the soft, pinky neon glow that hydrogen makes, but he worries about its explosive power. Some hasty calculations they had made the day before indicated the lab wouldn’t blow up, but they hadn’t been entirely sure.

As it turned out, the experiment was a success and Polanyi and Cashion recorded something that no one had ever seen before — a tiny amount of light produced by the reaction of hydrogen with chlorine. This light was chemiluminescence. Because Polanyi understood the source of the feeble light emissions in his experiment, he was able to predict exactly what kind of energy needed to be applied to make this chemical reaction take place. Over the years he expanded his theories for other reactions, which unexpectedly led to the development of powerful new kinds of chemical lasers. Ultimately that experiment in a broom closet resulted in a Nobel Prize.

As a young scientist ...

When Polanyi was 11 years old his father, who was a chemistry professor at the University of Manchester in England, sent him to Canada so that he would not be hurt when Germany was bombing Britain during World War II. Polanyi stayed with a family in Toronto for three years. He remembers going on a bicycle camping trip and reading the Count of Monte Cristo and War and Peace. He was not interested in science as much as in sociology and literature.

In school Polanyi thought it was sort of dumb just to follow instructions for a chemistry experiment and get the “right” result. He would always fool around and try to vary things, just to see what would happen. He was very curious. The problem was that he would always get the “wrong” result. This would get him in trouble and his teachers often said he lacked the discipline to learn. He kept at it, however, and eventually became very interested in science. But he likes to tell kids that a lifelong commitment to something need not start out with a love affair.

After the war Polanyi went back to Manchester, where he completed high school and obtained his university education. He returned to Canada after that, first for a job at the National Research Council, where he worked for a while with Gerhard Herzberg, who was studying energy states of molecules. After a stint at Princeton University in New Jersey, Polanyi took a job lecturing at the University of Toronto in 1956.

Throughout his career as a scientist, Polanyi has been very active and outspoken in the Peace Movement. In a 2003 article in the Globe and Mail newspaper, he criticized the proposed trillion-dollar U.S. National Missile Defence system, saying “National Missile Defence points the world down the wrong path; it is the path of fortress-building, which, in the 21st century, is hopelessly anachronistic. Unchecked, weapons and counter weapons lead only to the development of further weapons.”

According to Polanyi, science teaches a number of lessons concerning peace. First, none of us is in full possession of the truth, but we all work together, groping toward it. Second, for scientists, the pursuit of that truth is to be achieved through reason, not through violence. But he adds, “Of course, we shall always need faith. Reason would hardly suffice to get us out of bed in the morning. We need faith in what the day holds. But faith alone, as we have learnt, is inhuman, crushing all in its path. Reason listens, as well as talks. Of its nature it acknowledges the existence of others, since it triumphs only by persuading others. And that is how science advances. Not by scientific ‘proof’ ... We do not go to scientific meetings to announce results, but to debate them. We can never be sure. That is a lesson that science has to offer humanity.”

The Science