Bertram Neville Brockhouse

General Physics, Subatomic Particles, Optics, Biophysics, Theoretical Physics

Won the Nobel Prize in 1994 for designing the Triple-Axis Neutron Spectroscope and his use of it to investigate Condensed Matter

"Your mind is your most valuable survival organ. Learn to tune your mind like a radio, filtering out all the noise and other channels, focusing on one thing."

On an ordinary Wednesday morning in October 1994, Bert Brockhouse gets out of bed at his usual time, about 6:45 a.m. As he stretches a bit to loosen the overnight aches of his 76-year-old body, he sees the little red light blinking on the answering machine. “Who could have called in the middle of the night?” he wonders, as he presses the play button.

He listens to a voice announcing that the call is from Stockholm, Sweden: “B. N. Brockhouse and C. G. Shull have been selected as recipients of the 1994 Nobel Prize for physics.” Brockhouse is stunned. For a moment he thinks, “Oh, that’s interesting,” but then he realizes, “I am B. N. Brockhouse!”

He calls his wife Doris to listen to the tape with him. The rest of the day is filled with phone calls, telegrams and interviews for Brockhouse, who had been retired.

The next year is one of travel, awards, banquets and lectures. Brockhouse is simply beamed out of quiet retirement. In his annual Christmas letter to friends that year, after describing all the festivities in Stockholm, he writes, “If anyone cares, we got a new car in the summer, a Chrysler Neon.”

The origins of Brockhouse’s Nobel Prize lie back in 1951. Fresh out of the University of Toronto with a doctorate (PhD) in physics, he sat at his desk in a faded, blue-shingled wartime hut at Chalk River, home of the Atomic Energy Project funded by Canada’s National Research Council.

Brockhouse gazed out the window at the snow. It was winter, but he felt warm inside the hut. He just sat there, thinking, mulling things over in his mind. The other night he had been at the home of Donald Hurst, his boss and head of the neutron spectrometer section. They had been reading a 1944 paper about neutrons — subatomic particles with no electric charge that, together with protons, make up the nucleus of an atom.

The existence of neutrons had been verified only about 12 years before. Not much was known about them. Brockhouse didn’t quite understand the theories in the paper, but he felt it had a lot of interesting ideas. He was supposed to be working on something else, but he couldn’t stop thinking about the concepts in that paper and how he could do experiments at Chalk River to try out some of the new theories. He fiddled with some math on his notepad for a while and then went to the coffee room.

As he passed the lab that housed the radioactive nuclear pile, a controlled nuclear reaction that emitted one of the most powerful sources of neutrons in the world at the time, he wondered whether he could put it to use. In the coffee room he met Hurst. Brockhouse went up to the blackboard and said, “Don, there’s something I’d like to show you.” He sketched out some equations on the blackboard. The math described a device they could build that would use a neutron beam as a better type of spectrometer, a kind of flashlight that could probe the mysteries of crystal structures and other solids such as metals, minerals, gems and rocks.

As a young scientist ...

In the 1920s, Bert Brockhouse’s family moved from Lethbridge, Alberta, to Vancouver, British Columbia. They operated a rooming house in the city’s West End and Bert had a paper route to help supplement the family income. He liked fishing and went with his buddies to catch shiners, cod and salmon off the pier at English Bay. He fooled around with radios a lot as a teenager, hanging out at radio repair shops and building homemade radios from designs in popular electronics magazines.

After high school, instead of going to university, he worked as a radio repairman. Then World War II came along and he used his radio skills as an electronics technician in the Canadian Naval Reserve. When the war ended, Brockhouse went to the University of British Columbia, majoring in math and physics. After marrying Doris, a film cutter at the National Film Board, he finished his doctorate and the newlyweds moved to Chalk River. Brockhouse spent his working life as a researcher at Chalk River perfecting neutron spectroscopes and their applications. He solved problems controlling the source of the neutron beam; limiting it to neutrons of only one energy; getting rid of background radiation from other experiments in the lab; and problems with the sensitivity of the detectors. The resulting triple-axis neutron spectrometer is now used worldwide to investigate crystal structures.

The Science